1 Combinatoire & espace de probabilité

Exercice 1 On dispose de 10 billes que l'on veut aligner, combien peut-on former de figures différentes, si les billes de mêmes couleurs ne sont pas discernables et si :

- a. les 10 billes sont de couleurs différentes.
- b. si il y a 1 bille rouge et 9 noires.
- c. si il y a 2 billes rouges et 8 noires.
- d. si il y a 3 billes rouges, 4 billes vertes et 3 noires.

Exercice 2 Combien de triangles différents peut-on constituer en prenant leur sommet parmi 10 points (Ces points n'étant pas alignés 3 par 3).

Exercice 3 On considère un jeu de 32 cartes, combien peut-on assembler de main de 5 cartes telles que.

- a. sans condition sur les cartes.
- b. les 5 cartes tirées soient des cœurs.
- c. les 5 cartes tirées contiennent un carré d'as.
- d. les 5 cartes tirées contiennent un carré.
- e. les 5 cartes forment un full : c'est à dire deux cartes de même hauteur et trois cartes de même hauteur. (par exemple deux valets et trois rois)

Exercice 4 On lance 3 dés bien équilibrés.

- a. Décrire un modèle probabiliste associé à cette épreuve.
- b. Calculer la probabilité d'avoir trois 1.
- c. Calculer la probabilité pour que le même numéro apparaisse sur les 3 dés.
- d. Calculer la probabilité d'avoir un 1, un 2, et un 3.
- e. Calculer la probabilité pour que les numéros qui apparaissent sur les dés soient distincts deux à deux.
- f. Proposer un autre modèle probabiliste associé à cette épreuve qui ne corresponde pas à ordonner les dès, mais à voir les dés dans leur ensemble.

Exercice 5 Une urne contient n_1 boules rouges et n_2 boules blanches. On tire au hasard $k_1 + k_2$ boules. Quelle est la probabilité d'obtenir k_1 boules rouges et k_2 boules blanches, lors d'un tirage sans remise? lors d'un tirage avec remise?

Exercice 6 Lors d'une étude sur les médecins américains, on posait à des enseignants et des étudiants en médecine à Harvard la question : Étant donné une maladie dont la prévalence est de 0,1% et pour laquelle il existe un test de dépistage donnant 5% de faux positifs, quel est le risque qu'une personne dont le test est positif soit effectivement malade 12% des personnes interrogées ont répondu correctement à la question. Quelle est cette réponse correcte?

Les auteurs de l'étude devant les très mauvaises réponses obtenues conseille de reformuler la question sans utiliser de pourcentage, de probabilité ou de proportion, mais en prenant l'exemple d'une population d'un million de personnes, qu'est ce que cela donnerait?

<u>Exercice 7</u> Un ouvrier effectue un montage dans lequel entrent 3 composants identiques. Le montage n'est valable que lorsque les trois composants sont fonctionnels.

- a. Soit un ensemble de n composants dont un seul est défectueux.
 - i) Calculer le nombre a de tirages différents possibles de 3 composants chacun.
 - ii) Déterminer le nombre b de tirages différents qui contiennent le composant défectueux.
 - iii) Déterminer n pour que $\frac{b}{a} \le 5\%$
- b. On suppose maintenant qu'il y a deux composants défectueux dans un lot de n.
 - i) Calculer le nombre a de tirages différents possibles de 3 composants chacun.
 - ii) Déterminer le nombre b de tirages différents qui contiennent au moins un composant défectueux.

Exercice 8 Dans une ville, il y a 3 centres de secours d'urgence. 5 malades appellent en même temps un centre par téléphone après avoir choisi, au hasard, l'un des centres sur Internet.

- a. Modéliser ce problème.
- b. Quelle est la probabilité que les 5 malades appellent le même centre?
- c. Quelle est la probabilité que les 3 centres soient appelés?

Exercice 9 On marque n points sur un cercle, on en choisit deux au hasard, quelle est la probabilité qu'ils soient voisins?

2 Variables aléatoires discrètes

<u>Exercice 10</u> La probabilité qu'un cylindre de béton provenant de la production d'un fournisseur n'ai pas la norme minimale pour la résistance à la compression est égal à 4%. Sur un échantillon de 50 cylindres déterminer :

- a. La probabilité p_1 que tous les cylindres respectent la norme.
- b. La probabilité p_2 que exactement 2 cylindres ne respectent pas la norme.
- c. m, le nombre théorique "moyen" de cylindres ne respectant pas la norme dans un échantillon de 50 cylindres.

Exercice 11 La fabrication d'un objet dans une usine s'effectue avec 5% de défauts . On note N le nombre d'objets défectueux dans un lot de 30 objets, déterminer la loi de N. Calculer P(N=0), P(N=1), et P(N=2).

Exercice 12 Sur un chantier de TP, une entreprise doit préparer 50 cylindres de béton. Pour vérifier sa qualité 10 sont choisis au hasard, et on teste leur résistance à la compression. Le béton est considéré comme conforme si plus de 9 cylindres ont la résistance minimale exigée. On suppose maintenant que parmi les 50 cylindres, 5 ne sont pas conformes.

- a. Quelle est la proportion maximale de cylindres qui peuvent être non conforme dans l'échantillon pour que le béton soit accepté?
- b. Quelle est la proportion de cylindres non conforme dans la population?
- c. Quelle est la probabilité que le béton soit considéré conforme?
- d. Répondre aux mêmes questions dans le cas où parmi les 50 cylindres, 7 ne sont pas conformes.

Exercice 13 On constitue une file d'attente en attribuant au hasard des numéros d'ordre à n personnes. On note D la variable aléatoire représentant le nombre de personnes se trouvant entre deux amis dans la queue.

- a) Déterminer P(D = k).
- b) Pour quelle valeur de k, P(D = k) est-il maximum?
- c) Déterminer l'espérance de D. On pourra utiliser les formules classiques suivantes :

$$\sum_{k=1}^{n} k = \frac{1}{2}n(n+1) \quad \sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1)$$

Exercice 14 On jette deux dés , on note X le résultat du 1er et Y le résultat du 2ème. $Z = \max(X;Y)$. Déterminer la loi de Z, son espérance et sa variance.

Exercice 15 On suppose que le nombre d'appels téléphoniques arrivant à un standard pendant un intervalle d'une heure suit une loi de Poisson de paramètre 20 $(P(N=k)=e^{-20\frac{20^k}{k!}})$.

- a) En vous appuyant sur le cours, déterminer le nombre moyen d'appels reçus en une heure.
- b) Calculer la probabilité que le standard reçoive moins de 5 appels en une heure.
- c) Un second standard reçoit en moyenne 50 appels par heure. Comment peut-on modéliser ceci à l'aide d'une loi de Poisson? Calculer la probabilité que le standard reçoive moins de 5 appels en une heure.

Exercice 16 Une certaine pièce A d'une machine tombe souvent en panne, elle est alors remplacée. On note p_n la probabilité de bon fonctionnement le $n^{\text{ème}}$ jour. Si la machine fonctionne le $n^{\text{ème}}$ jour la probabilité qu'elle fonctionne le $(n+1)^{\text{ème}}$ jour est 0.9, en revanche si la machine tombe en panne le $n^{\text{ème}}$ jour la probabilité qu'elle fonctionne le $(n+1)^{\text{ème}}$ jour est 0.4. On suppose qu'elle fonctionne le jour 0. a) Exprimer p_{n+1} en fonction de p_n . En déduire p_n en fonction de p_n en pourra pour cela translater la suite p_n pour se ramener à une suite géométrique. Pour tout p_n on pose p_n et on cherche p_n de telle sorte que la suite p_n soit géométrique.

Exercice 17 On cherche à modéliser le comportement de voitures arrivant à une bifurcation autoroutière avec deux directions D_1 et D_2 , on modélise le nombre de voitures qui arrivent à cette bifurcation durant un laps de temps t par une variable aléatoire X de loi de Poisson de paramètre λt . On suppose que chaque voiture prend la direction D_1 avec la probabilité p, et que les choix des voitures sont indépendants les uns des autres, on modélise le nombre de voitures prenant la direction D_1 par une variable aléatoire X_1 et le nombre de voitures prenant la direction D_2 par une variable aléatoire X_2 .

- a. Quel lien existe entre X_1 , X_2 et X.
- b. Déterminer la probabilité de l'événement $(X_1 = n_1)$ sachant que (X = 0), puis la probabilité de l'événement $(X_1 = n_1)$ sachant que (X = n).
- c. Déterminer la loi de X_1 .

b) Déterminer la limite de p_n .

d. Déterminer la probabilité de l'événement (X = n) sachant que $(X_1 = n_1)$.

3 Variables aléatoires à densité

Exercice 18 Soit X une variable aléatoire de densité f_X avec

$$f_X(t) = 1 + t$$
 si $t \in [-1, 0]$, α si $t \in [0, 2]$ et 0 sinon

- a) Représenter la densité de X.
- b) Déterminer α .
- c) Calculer et représenter la fonction de répartition de X.
- d) Calculer $P(X > \frac{1}{2})$ puis $\mathbb{E}(X)$.
- e) Calculer la fonction de répartition F_Y de la variable aléatoire $Y = X^2$, en déduire sa densité f_Y .
- f) Représenter les deux fonctions f_Y et F_Y .
- g) Calculer $\mathbb{E}(Y)$ d'une part à l'aide de f_Y d'autre part à l'aide de f_X .

Exercice 19 Soit X une variable aléatoire de densité f_X :

$$f_X(t) = Kt^2 \text{ si } t \in [-\alpha; \alpha], \quad 0 \text{ sinon}$$

- a) Représenter la densité de X.
- b) Déterminer K en fonction de α .
- c) Déterminer puis représenter F_X la fonction de répartition de X.
- d) Calculer $P(X > \frac{\alpha}{2})$ puis $\mathbb{E}(X)$.

Exercice 20 Soit X une variable aléatoire gaussienne de paramètres $(m=3; \sigma^2=4)$

- a) Calculer P(X < 1); P(X > 2); P(|X| < 4); P(|X| < 4|X > 2);
- b) Déterminer α le plus grand possible tel que $P(X-2>\alpha)>10^{-2}$
- c) Quelle est la loi de $\frac{X-1}{3}$.

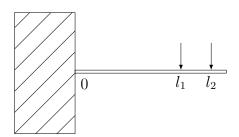
Exercice 21 Les normes d'un agrégat d'un mélange bitumineux sont de 50% à 60% pour une certaine ouverture de tamis. Les essais de tamisage effectués chez le fournisseur indique que le pourcentage passant est en moyenne de 54% avec un écart type de 3%. On suppose que le pourcentage passant est distribué normalement, quelle proportion de ce fournisseur respecte les normes.

Exercice 22 Une usine à béton fournit du béton dont la résistance à la compression à 28 jours suit une loi normale de paramètres ($m=39\,\mathrm{MPa}$ et $\sigma=1,5\,\mathrm{MPa}$). Un commercial de l'usine annonce que sur 100 essais, au plus 1 aura une résistance à la compression inférieur à 35 MPa. Qu'en pensez-vous?

Exercice 23

On rappelle que si deux charges X_1 et X_2 sont appliquées en l_1 et l_2 à une poutre en porte à faux selon le schéma ci-contre, le moment fléchissant dû aux charges est $M_f = l_1 X_1 + l_2 X_2$.

a. Supposons que X_1 et X_2 sont des variables aléatoires indépendantes avec comme moyenne respectivement 5 kN et 10 kNet dont les écarts type sont 1 kN et 2 kN. Quelle est l'espérance du moment fléchissant ainsi que sa region et 2



b. Supposons de plus que X_1 et X_2 suivent des lois normales, quelle est la probabilité que le moment fléchissant soit supérieur à $20 \, \mathrm{kN}$?

Exercice 24 L'éclairage d'une commune est assurée par 2000 lampes dont la durée de vie moyenne est 10000 heures. Cette durée de vie suit une distribution normale d'écart type $\sigma = 2000$.

- a) Quel est le nombre de lampes hors d'usage au bout de 5000 H? de 7500 H? de 15000 H?
- b) Au bout de combien d'heure 5% sont hors d'usage?
- c) D'autres ampoules ont une durée de vie qui suit une loi $\mathcal{N}(10500;3000^2)$. Quelles ampoules faut-il choisir si l'on veut :
- i) Que la durée de vie moyenne soit maximale
- ii) Que la durée durant laquelle 95% des ampoules fonctionnent soit maximale.

Exercice 25 Les notes d'un contrôle de probabilité suivent une loi normale de paramètre $(8, 5; 4^2)$.

- a) Quelle est la proportion d'étudiants ayant la moyenne.
- b) On veut améliorer les notes à l'aide d'un transformation affine Y = aX + b. Déterminer a, b pour que 50% des étudiants aient la moyenne et 75% aient une note supérieur à 8.
- c) Comment peut-on faire pour garder la même moyenne et avoir 80% des étudiants entre 5 et 15.

4 Couples de variables aléatoires et propagation des erreurs

Exercice 26 On considère deux variables aléatoires exponentielles indépendantes X_1 et X_2 de paramètres a_1 et a_2 , $(f_{X_1}(t) = a_1e^{-a_1t}$ si t > 0, 0 sinon). On pose $Y = \min(X_1; X_2)$. On note F_{X_1}, F_{X_2} et F_Y leur fonction de répartition.

- a. Calculer $P(Y \ge t)$ en fonction de F_{X_1} et F_{X_2} .
- b. Déterminer F_Y
- c. Calculer la densité, et l'espérance de Y.

Exercice 27 Une urne contient N jetons numérotés de 1 à N. On tire dans cette urne p jetons au hasard, successivement et sans remise. On appelle X_i la V.A. qui au cours d'une succession de tirages modélise le numéro du jeton extrait au tirage de rang i.

- a) Déterminer la loi de probabilité de X_i .
- b) Les variables aléatoires X_i et X_j sont-elles indépendantes?
- c) On pose $S = X_1 + X_2 + ... + X_p$.
- c1) Calculer $\mathbb{E}(Xi)$ puis $\mathbb{E}(S)$.
- c2) Calculer Var(Xi), Cov(Xi; Xj) puis Var(S).

Exercice 28 Soit (X; Y) un couple de V.A. de loi

$$f(x;y) = \frac{1}{2\pi\sigma_1\sigma_2} e^{-\left(\frac{(x-\mu_1)^2}{2\sigma_1} + \frac{(x-\mu_2)^2}{2\sigma_2}\right)}$$

- a) Déterminer les lois marginales de X et Y.
- b) Les variables aléatoire X et Y sont-elles indépendantes?
- c) Déterminer la loi de X + Y.

Exercice 29 Dans une société, les employés d'un bâtiment A ont souvent besoin d'appeler au téléphone un bâtiment B. Le bâtiment A contient 200 employés et l'on constate que chacun d'entre eux veut téléphoner en moyenne 3mn par heure au bâtiment B. Quel nombre de lignes, minimal k faut-il établir entre les 2 bâtiments pour qu'un employé de A, désirant téléphoner en B, ait une probabilité inférieur à 1% que toutes les lignes soient occupées.

Exercice 30 1. Soit (X; Y) un couple de V.A. de loi f(x; y) = 8xy si $x \in [0; 1]$ et $y \in [0; x], 0$ sinon.

- a) Déterminer F_X et F_Y les densités de X et Y.
- b) Calculer $P(Y < \frac{1}{2})$; P(Y < X) et E(X).
- c) Calculer $P(X < \frac{7}{2}|Y > \frac{1}{2})$.

Exercice 31 Soit (X_1, X_2) un couple de v.a.r. admettant la densité de probabilité

$$f(x_1, x_2) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp{-(\frac{1}{2(1-\rho^2)}(x_1^2 - 2\rho x_1 x_2 + x_2^2))}. \quad \text{où } \rho \in]0, 1[.$$

Vérifier que f est une densité de probabilité sur \mathbb{R}^2 et trouver les densités marginales de X_1 et X_2 . Ces v.a.r. sont-elles indépendantes ?

4.1 Propagation des erreurs

Exercice 32 Dans cet exercice on note $X=m\pm\delta$ pour indiquer que X est une variable aléatoire d'espérance m et d'écart type $\frac{1}{2}\delta$. Cette notation est justifiée par le fait que si la loi de X est normale 95% des valeurs prises par X se trouvent entre $m-\delta$ et $m+\delta$, on suppose de plus que δ est "petit". On posera $\varepsilon=X-m$. On pourra ainsi effectuer des DL_1 en m.

- a. Si $X = m \pm 2\sigma$, que dire de X^2 ?
- b. Si $X = m \pm 2\sigma$, que dire de X^n ?
- c. Si $X = m \pm 2\sigma$, que dire de $\ln X$?
- d. Si $X = m \pm 2\sigma$, que dire de e^X ?

Exercice 33 Dans cet exercice on note $X=m_X\pm\delta_X$ pour indiquer que X est une variable aléatoire d'espérance m_X et d'écart type $\frac{1}{2}\delta_X$. On suppose de plus que δ_X est "petit". On posera $\varepsilon_X=X-m_X$. De même $Y=m_Y\pm\delta_Y$ et $\varepsilon_Y=Y-m_Y$.

On suppose $X = m_X \pm 2\sigma_X$, $Y = m_Y \pm 2\sigma_Y$, et que X et Y sont indépendantes.

- a. Si $Z_{a.} = X + Y$, que dire de Z?
- b. Si $Z_{b.} = X Y$, que dire de Z?
- c. Si $Z_{c.} = X 2Y$, que dire de Z?
- d. Si $Z_{d.} = XY$, que dire de Z?
- e. Si $Z_{e.} = \frac{Y}{X}$, que dire de Z?

Exercice 34 Dans cet exercice on note $X=m_X\pm\delta_X$ pour indiquer que X est une variable aléatoire d'espérance m_X et d'écart type $\frac{1}{2}\delta_X$. On suppose de plus que δ_X est "petit". On posera $\varepsilon_X=X-m_X$. De même $Y=m_Y\pm\delta_Y$ et $\varepsilon_Y=Y-m_Y$.

On suppose $X=m_X\pm 2\sigma_X$, $Y=m_Y\pm 2\sigma_Y$, $Z=5X^2Y$, que dire de Z

- a. Si X et Y ne sont pas corrélées Cov(X, Y) = 0.
- b. Si X et Y sont corrélées de telles sortes que $Cov(X,Y) = \sigma_X \sigma_Y$, qui est la plus grande covariance possible.
- c. Montrer que dans ce dernier cas c'est comme si les erreurs maximales s'ajoutaient avec comme hypothèse $m_X 2\sigma_X \le X \le m_X + 2\sigma_X$ et $m_Y 2\sigma_Y \le Y \le m_Y + 2\sigma_Y$

5 Convergence des suites de variables aléatoires

Exercice 35 1. On jette 10 pièces , non truquées, soit X le nombre de pile, déterminer la loi de X. Tracer la fonction de répartition de X puis comparer là à la fonction de répartition de l'approximation centrale.

<u>Exercice 36</u> On suppose que la durée de vie d'une ampoule électrique est une V.A. de loi exponentielle de paramètre $\lambda=10^{-3}h^{-1}$. Si l'on remplace une ampoule dès qu'elle "claque". Quelle est la probabilité qu'au bout de 45 000 heures l'ampoule en fonctionnement soit au moins la cinquantième.

<u>Exercice 37</u> Une usine fabrique des pièces métalliques dont 98% des pièces vérifient un critère de conformité :

- a) Quelle est la probabilité que sur un échantillon de 500 pièces il y ai plus de 15 pièces non conformes.
- b) Quelle est le nombre "moyen" de pièces défectueuses dans un échantillon de 500 pièces.
- c) Quelle est la probabilité que sur un échantillon de 500 pièces il y ai exactement 10 pièces non conformes.

Exercice 38 Soit (X_n) une suite de variables aléatoires exponentielles de paramètre n, montrer que cette suite converge en probabilité vers la variable aléatoire nulle.

6 Estimation et intervalle de confiance

Exercice 39 Un échantillon de 478 électeurs choisis aléatoirement, indique que 255 d'entre eux vont voter pour A. Évaluer des intervalles de confiance aux risques 1% et à 5% pour la proportion d'électeurs votant pour A.

Exercice 40 La teneur en bitume d'un mélange de béton est distribuée normalement avec moyenne 6% et écart type 0, 4%. On étudie un échantillon de 4 éprouvette cylindriques, dans quel intervalle se trouvera la teneur en bitume de notre échantillon dans 95% des cas. Cet intervalle est-il un intervalle de confiance?

Exercice 41 Lors d'un contrôle journalier de la masse, effectué à la sortie d'une chaîne de fabrication de billes en acier sur un échantillon de 32 billes on obtient une moyenne m=2,26 g et un écart type $\sigma=12$ mg. On suppose les masses mesurées suivent une loi de Laplace Gauss.

- a) Estimer l'écart type théorique de la production journalière.
- b) Estimer le poids moyen à l'aide d'un intervalle de confiance symétrique au niveau de 95%.
- c) Quel devrait être la taille de l'échantillon pour situer le poids moyen journalier de la production dans un intervalle de confiance symétrique de ± 5 mg avec un niveau de 95%.
- d) Si l'on veut situer le poids moyen de la production avec un même niveau de confiance dans un intervalle de longueur deux fois plus petite, dans quelle proportion doit évoluer l'échantillon pris.

Exercice 42 On effectue un contrôle de fabrication sur des pièces dont une proportion p est défectueuse.

On contrôle un lot de 200 pièces et on trouve 20 pièces défectueuses. Donner des intervalles de confiance pour l'estimation de p, au niveau 95% puis 99%.

Exercice 43 Comparaison de deux estimateurs.

Soit (X_i) des variables aléatoires indépendantes et suivent toutes une loi uniforme sur [0; 2A] on note :

$$\overline{X} = \frac{1}{n} \sum_{k=1}^{n} X_k$$
 et $M = \max(X_1; X_2 ...; X_n)$

- a) Rappeler les valeurs de $\mathbb{E}(X)$; $\mathbb{E}(\overline{X})$ et $\mathbb{V}ar(\overline{X})$.
- b) Déterminer la fonction de répartition de la variable aléatoire $M: F_M(t)$.

- c) Déterminer $\mathbb{E}(M)$ puis un α tel que la nouvelle variable \hat{M} définie par $\hat{M}=\alpha M$ soit un estimateur sans biais de A c'est à dire tel que $\mathbb{E}(\hat{M})=A$.
- d) En calculant les variances des variables aléatoires \overline{X} et \hat{M} , comparer l'efficacité de ces deux estimateurs sans biais de A.

Exercice 44 On appelle loi L de paramètre $\alpha \in]0; \frac{1}{3}[$, $P=2\alpha\delta_1+\alpha\delta_{-1}+(1-3\alpha)\delta_0$. Dans un échantillon de taille n qui suit une loi L de paramètre α , on note n_1 le nombre de 1, n_{-1} le nombre de -1, et n_0 le nombre de 0.

- a. Soit X une variable aléatoire de loi L de paramètre α , déterminer $\mathbb{E}(X)$.
- b. Déterminer $\hat{\alpha}$ l'estimateur du maximum de vraisemblance de α .
- c. Écrire $\hat{\alpha}$ à l'aide des X_i . Est-il biaisé ? \overline{X} est-il un estimateur biaisé de α ?
- d. Comparer l'erreur quadratique pour chacun des deux estimateurs, lequel est le plus efficace? Exemple avec $\alpha = \frac{1}{6}$ et n = 10.
- e. Si une expérience donne $n_1 = 5$, $n_{-1} = 4$, et $n_0 = 1$, que donne les deux estimateurs?

Exercice 45 Maximum de vraisemblance :

On donne ici une idée d'une méthode très utile, qui permet de trouver des estimateurs performants : On se place dans un modèle où les X_i sont indépendants de même loi de densité $p(x,\theta)$ (par exemple pour une loi exponentielle de paramètre θ on a $p(x,\theta)=\theta e^{-\theta x}$ si x>0, 0 sinon). Si $x_1,x_2,...,x_n$ sont les valeurs prises par les V.A. $X_1...X_n$ lors d'une expérience, on appelle vraisemblance la fonction $L(x_1,x_2,...,x_n,\theta)=p(x_1,\theta)p(x_2,\theta)...p(x_n,\theta)$, on appelle maximum de vraisemblance la valeur de θ qui maximise la vraisemblance, elle dépend des x_i , elle permet de définir l'estimateur $\hat{\theta}$.

- a) Donner une interprétation intuitive qui justifie le choix de l'estimateur $\hat{\theta}$.
- b) Si les X_i suivent des lois normales de paramètres (m, σ) , σ étant connu, déterminer l'estimateur du maximum de vraisemblance de la moyenne m.
- c) Reprendre l'exercice 43 et déterminer l'estimateur du maximum de vraisemblance de A.

Exercice 46 Sondage: Méthodes des strates.

On veut estimer la moyenne d'un caractère (par exemple 1 si on vote pour A, 0 si on vote pour B) d'une population (E) d'effectif N que l'on peut découper en strates $(E_1,...,E_r)$, d'effectif $N_1...,N_r$ (par exemple par âge). On note μ_i la moyenne de la strate i et σ_i son écart type, on note de plus μ la moyenne générale et σ l'écart type de la population, on ne connaît pas ces différentes quantités. On extrait de chaque population E_i un échantillon non exhaustif de taille n_i , on note $X_{(i;1)}, X_{(i;2)}, ..., X_{(i,n_i)}$ les résultats sur l'échantillon de E_i , et $\overline{X_i}$ la moyenne de ces n_i valeurs, enfin on note :

$$Y = \sum_{1 \le i \le r} \frac{N_i}{N} \overline{X_i}$$

- a) Montrer que Y est un estimateur sans biais de μ .
- b) Montrer que:

$$\mathbb{V}\mathrm{ar}(Y) = \frac{1}{N^2} \sum_i \frac{N_i^2 \sigma_i^2}{n_i}$$

c) On choisit des échantillons dans chaque strate de taille proportionnelle à la taille de la strate $n_i = \frac{N_i}{N}n$, montrer que :

$$\operatorname{Var}(Y) = \frac{1}{n} \frac{1}{N} \sum_{i} N_i \sigma_i^2 \le \frac{\max_i \sigma_i^2}{n}$$

d) On fait maintenant un sondage sur n personnes sans stratification, on note \overline{X} la moyenne de l'échantillon. Comparer sa variance avec celle de Y.

7 Tests statistiques

Exercice 47 Des appareils électriques de chauffage ont une durée de vie moyenne de 20000 heures avec un écart type de 7000 heures, on suppose que les durées de vie suivent une loi normale. À l'aide d'un changement de composant, le fabricant affirme que la durée de vie moyenne peut être accrue. On a testé un échantillon de 38 appareils et on a observé une durée de vie moyenne de 22000 heures. Peut-on soutenir cette affirmation au risque de 5%, 1%?

Exercice 48 A la réception de colis, un responsable doute de l'exactitude des masses affichées sur les boîtes. Il prélève, au hasard, 25 boîtes qu'il pèse. Soit x_i la masse de la boîte i. Il obtient

$$\sum x_i = 49,5 \text{ kg et } \sum x_i^2 = 98,3 \text{ kg}^2$$

On supposera que les masses de la production suivent une loi normale.

- a. Donner une estimation ponctuelle de la moyenne et de la variance de la masse des boîtes de la production.
- b. Déterminer un intervalle de confiance de la moyenne des masses de la production pour un risque a fixé à 5 %.
- c. Sachant que la masse affichée sur chaque boîte est de 2 kg, les doutes du responsable sont-ils justifiés ?
- d. En supposant que les estimations de la moyenne et de la variance, calculées à la question a., aient été obtenues à partir d'un échantillon de 50 boîtes (et non de 25), déterminer alors l'intervalle de confiance de la moyenne et celui de l'écart-type des masses. On prendra encore $\alpha = 5 \%$.
- e. Peut-on dire que la masse moyenne des boîtes envoyées dans les colis satisfait la norme de fabrication $m_0 = 2,00$ kg pour un risque $\alpha = 5 \%$?
- f. Sachant que la variance de la production est $s^2 = 0,01$, peut-on dire que la masse moyenne des boîtes envoyées dans les colis satisfait la norme de fabrication pour un risque a = 5 %?

Exercice 49 Une pièce jetée 660 fois tombe 295 fois sur pile, peut-on affirmer que cette pièce est bien équilibrée?

Exercice 50 Le fabricant d'une nouvelle solution anti rouille annonce que son produit est efficace à 90%. Dans un échantillon de 500 pièces le résultat est probant pour 420 d'entre elles. L'affirmation du fabricant est-elle légitime?

<u>Exercice 51</u> Lors d'une étude granulométrique de sédiments, on a relevé, pour deux échantillons C et D, les caractéristiques suivantes de la distribution des diamètres des grains. On fait l'hypothèse que les diamètres des grains suivent une loi normale.

Échantillon C: 12 grains, moyenne 63 microns, écart type 9,2 microns.

Échantillon D: 18 grains, moyenne 51 microns, écart type 8,5 microns.

Les deux échantillons sont-ils significativement différents, en ce qui concerne le diamètre des grains ? On supposera que les diamètres des grains suivent une loi normale.

Exercice 52 Deux machines A et B fabriquent en série la même pièces. Lors d'une expertise de la production, on remarque que la machine A a produit 2700 pièces dont 50 sont défectueuses alors que sur les 1600 pièces produites par la machine B, 35 sont défectueuses. Doit-on conclure que la machine A est mieux réglée que la B?

Exercice 53 Pour contrôler la fabrication d'une pièce industrielle, on étudie la distribution de 100 séries de contrôle de cette pièce. Chaque série contient 200 pièces prélevées au hasard dans la fabrication (prélèvement non exhaustif). On désigne par N_k le nombre de séries de contrôle, ayant k pièces défectueuses, les observations sont résumées dans le tableau suivant :

k	0	1	2	3	4	5	6	7	8	9	>9
N_k	1	7	14	19	20	17	12	7	2	0	1

La production est homogène si la proportion de pièces défectueuses ne varie pas au cours des prélèvements. On teste donc H_0 : La production est homogène. On fera un test de χ^2 au risque de 5%.

<u>Exercice 54</u> L'analyse des charges de rupture d'un échantillon de 109 câbles donne les résultats suivants :

charge de rupture en kg	650	655	660	665	670	675	680	685	690	695	700
effectif	1	8	13	22	24	19	9	8	3	1	1

- a) Calculer la moyenne et l'écart type de cette série. Puis estimer moyenne et écart type de l'ensemble de la production.
- b) Les charges de ruptures suivent-elles une loi normale?

<u>Exercice 55</u> Une étude sur l'utilisation de certains distributeurs de billets SNCF, permet de mieux comprendre les phénomènes d'attentes, on relève toutes les heures le nombre de personnes faisant la queue, et cela pour une dizaine de distributeurs, on obtient les résultat suivant :

Taille de la file d'attente	0	1	2	3	4	5 et +
Nombre d'observations	24	39	28	18	6	9

- a) On veut modéliser la taille de la file d'attente par une variable aléatoire T, estimer l'espérance de T.
- b) Peut-on faire l'hypothèse que la taille de la file d'attente suit une loi de Poisson?

<u>Exercice 56</u> On mesure la taille de pères né en 1942 et celle de leur fils adultes, on obtient les résultats suivants :

	Taille de l'échantillon	Taille moyenne	écart type de l'échantillon
Père	241	169,7	8,21
Fils	215	174,3	9,41

En admettant que les tailles des hommes d'une même génération suivent une loi de Gauss, peut-on conclure qu'entre ces deux générations la taille des hommes a significativement augmentée?

Exercice 57 On veut comparer la durée de vie de composants de trois marques différentes :

Échantillon 1	403	442	431	430
Échantillon 2	460	450	435	429
Échantillon 3	455	420	415	

Tester si il y a une différence significative entre les différentes marques?

Exercice 58 On pèse de jeunes hommes lors de leur trois jours :

Poids mesuré en kg	<60	60-64	64-67	67-69	69-72	72-76	76-95	>95
Nombres de jeunes	15	65	63	70	58	45	15	4

L'hypothèse que le poids de ces jeunes hommes suit une loi normale est elle raisonnable?

Exercice 59 On veut étudier si il y a indépendance entre les notes de R.D.M. et les notes de Mathématiques : sur plusieurs années on a relevées les notes suivantes.

	RDM<6	6 <rdm<9< th=""><th>9<rdm<12< th=""><th>RDM>12</th></rdm<12<></th></rdm<9<>	9 <rdm<12< th=""><th>RDM>12</th></rdm<12<>	RDM>12
M<6	15	8	5	1
6 <m<9< td=""><td>10</td><td>28</td><td>10</td><td>7</td></m<9<>	10	28	10	7
9 <m<12< td=""><td>6</td><td>25</td><td>31</td><td>15</td></m<12<>	6	25	31	15
12 <m< td=""><td>3</td><td>13</td><td>16</td><td>27</td></m<>	3	13	16	27

Que peut-on conclure?

Exercice 60 Lors de la construction d'un grand pont en béton précontraint, on a fait, lors du bétonnage, trois prélèvements sur chacun des 145 voussoirs. Pour chacun de ces prélèvements on a mesuré sa résistance à la compression en Mpa, 414 mesures ont été retenues :

résistance	34/36	36/38	38/40	40/42	42/44	44/46	46/48	48/50	50/52	52/54	54/56	total
effectif	1	1	23	28	42	96	96	86	30	10	1	414

On calcul la moyenne et l'écart type de la série statistique : m=46, 1MPa et $\sigma=3, 37MPa$. Tester l'hypothèse que la résistance à la compression suit une loi normale.

Exercice 61 Un entrepreneur est content d'une première livraison L1 d'un fournisseur de cables, sur 7 cables téstés, il obtient les charges de rupture suivantes en tonnes :

Lors d'une deuxième livraison l'entrepreneur teste 15 cables il obtient les résultats suivants :

7,80	7.60	7.60	7.50	7 40	7 25	7 25	7 25	7.20	7 10	7.05	7.05	7.05	6.05	600
/.&U	/.nu	/.nu	1	7.40	1 /	1.23	1.23	L 1.ZU	/.IU	1.05	1.00	1.05	0.9.	n.გu
,,,,,,,	,,,,,	,,,,,	.,	,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , _ c	.,	.,	,,,,	,,,,,	.,00	,,,,,	0,,,	, 0,00

- a. Calculer les moyennes et les écarts types des deux séries de résultats.
- b. On fait l'hypothèse que les charges de ruptures suivent une loi normale, estimer les paramètres de cette loi en ne considérant que la première livraison, quelle serait la proportion estimée de câbles ne résistant pas à une charge de 7 tonnes?
- c. Tester l'hypothèse que les deux livraisons proviennent bien d'une même production homogène.
- d. On suppose dans cette question que les deux livraison proviennent bien d'une production homogène, tester que les charges de rupture suivent une loi normale.

<u>Exercice 62</u> Les nombres de non conformité repérés du contrôle de 360 composants d'un fournisseur A et 440 d'un fournisseur B sont donnés dans le tableau suivant :

	Aucune	Mineure	Majeure	Critique	Total
fournisseur A	152	120	80	8	360
fournisseur B	120	200	100	20	440
total	272	320	180	28	800

Peut-on conclure au niveau 95% que les deux fournisseurs présentent un niveau de qualité identique?

8 Régression linéaire

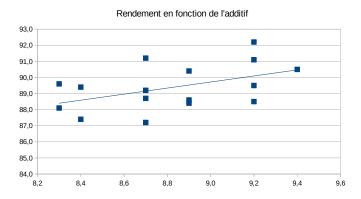
Exercice 63 Des tests d'endurance thermique ont été effectués pour étudier la durée de vie de fils de polyester, en fonction d'un certain additif. Les données expérimentales sont étudiées à l'aide de LibreOffice, les résultats sont données ci dessous. Le rendement est exprimé en pourcentage et l'additif en gramme.

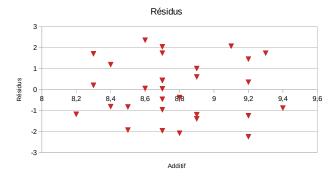
- a. Les hypothèses de la régression linéaire vous semblent-elles remplies?
- b. Quelle est l'équation de la droite de régression linéaire?
- c. Que vaut le coefficient de corrélation linéaire?
- d. Au niveau de 95%, peut-on affirmer que la durée de vie des fils de polyester et l'additif sont linéairement corrélés.
- e. Donner un intervalle de confiance au niveau 95% pour la valeur moyenne du rendement pour 9g d'additif.

Numéro du lot	Additif	Rendeme
1	8,7	88,7
2	9,2	91,1
3	8,6	91,2
4	9,2	89,5
5	8,7	89,6
6	8,7	89,2
7	8,5	87,7
8	9,2	88,5
9	8,5	86,6
10	8,3	89,6
11	8,6	88,9
12	8,9	88,4
13	8,8	87,4
14	8,4	87,4
15	8,8	89,1
16	8,4	89,4
17	8,2	86,4
18	9,2	92,2
19	8,7	90,9
20	9,4	90,5
21	8,7	89,6
22	8,3	88,1
23	8,9	90,8
24	8,9	88,6
25	9,3	92,8
26	8,7	87,2
27	9,1	92,5
28	8,7	91,2
29	8,7	88,2
30	8,9	90,4

Régression	
Modèle de régression	Linéaire
Sortie DROITEREG brute	
3,16882816118573	61,58881426586
0,826358033584686	7,254432088475
0,344336908839342	1,402051424491
14,7048592142563	28
28,9060504863362	55,04094951366
Statistiques de régression	
R^2	0,344336908839
Erreur type	1,402051424491
Nombre de variables X	1
Observations	30
R^2 ajusté	0,320920369869

Analyse de la Variance (AN	(OVA)					
	df	SS	MS	F	Précision F	
Régression	1	28,9060505	28,9060505	14,7048592	0,00065341	
Résidu	28	55,0409495	1,9657482			
Total	29	83,947				
Niveau de confiance	0,95					
	Coefficients	Erreur type	Statistique d	Valeur P	Inférieur 95	Supérieur 95
Intercepter	61,58881426586	7,25443209	8,48981885	3,132E-09	46,7287838	76,4488448
Additif	3,168828161186	0,82635803	3,83469154	0,00065341	1,47611046	4,86154586



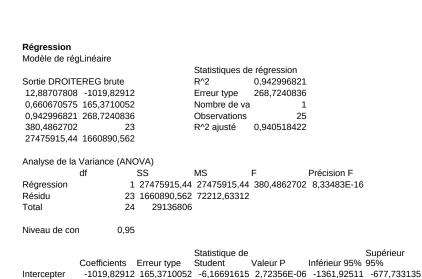


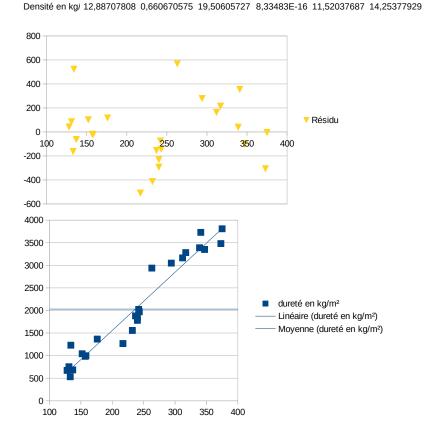
Mathématiques 3 11 http://annales.maths.u-cergy.fr/

Exercice 64 Une entreprise étudie le lien entre dureté de panneaux de contreplaqué (en kg/cm²) et leur densité (en kg/m³, 25 panneaux ont été fabriqués de densité variant de 128 kg/m³ à 373 kg/m³ et la dureté de chacun d'entre eux a été mesurée.)

- a. Les hypothèses de la régression linéaire vous semblent-elles remplies?
- b. Quelle est l'équation de la droite de régression linéaire?
- c. Quelle est la part de la variation totale expliquée par la régression?
- d. Au niveau de 95%, peut-on affirmer que la dureté et la densité des panneaux de sont linéairement corrélés.

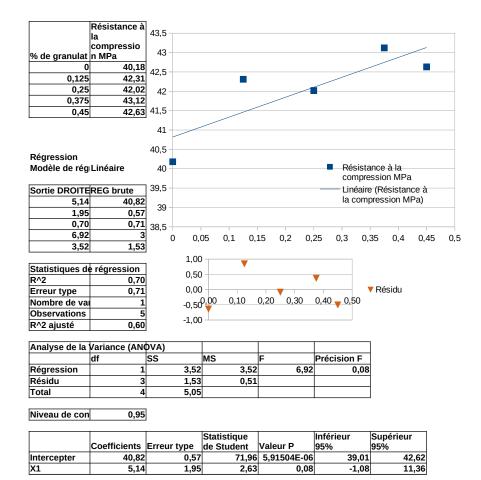
plaque numéro		Densité en kg/m³		dureté en kg/m²
	1		152	1041
	2		134	1230
	2 3 4 5 6 7 8		134 157	1230 984
	4		176	1366
	5		176 133 158 137 128 131	1366 532 997 683 672
	6		158	997
	7		137	683
	8		128	672
	9		131	754
	9 10 11 12 13 14 15 16		294 240 243 375 242 240 232 237	754 3048 1780 1970 2938 3809 2024 1843 1557
	11		240	1780
	12		243	1970
	13		263	2938
	14		375	3809
	15		242	2024
	16		240	1843
	17		232	1557
	18		237	1880
	19		217	1268
	20		373	3/81
	20 21 22 23 24 25	-	373 312 339 347 317 341	1268 3481 3164 3389 3350 3281 3729
	22		339	3389
	23		347	3350
	24		317	3281
	25		341	3729
	23		241	3123





Exercice 65 On cherche à étudier le lien susceptible d'exister entre la résistance à la compression d'un béton et la proportion d'un certain granulat léger entrant dans la composition du béton.

- a. Les hypothèses de la régression linéaire vous semblent-elles remplies?
- b. Quelle est l'équation de la droite de régression linéaire?
- c. Quelle est la part de la variation totale expliquée par la régression?
- d. Au niveau de 95%, peut-on affirmer que la dureté et la densité des panneaux de sont linéairement corrélés.



Fonction de répartition d'une loi normale centrée réduite

$$P(X \le x) = \Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy$$

La loi normale centrée est symétrique : $\Phi(-x) = 1 - \Phi(x)$

	0	1	2	3	4	5	6	7	8	9
0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0,1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0,2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0,3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0,4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0,5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0,6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0,7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0,8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0,9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1,0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1,1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1,2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1,3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1,4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1,5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1,6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1,7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1,8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1,9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2,0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2,1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2,2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2,3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2,4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2,5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2,6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2,7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2,8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2,9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3,0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3,1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3,2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3,3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3,4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3,5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3,6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999

Queue de distribution

X	3.5	3.6	3.8	4.0	4.2	4.4	4.6
$\Phi(x)$	99977	0.99984	0.99993	0.999968	0.999987	0.999995	0.999998

Table des quantiles d'une loi de Student à ν degrés de libertés

Si X est une variable aléatoire suivant une loi de Student à ν degrés de liberté, le tableau donne t avec

$$P(X < t) = \alpha$$

Par exemple si $X \sim \mathcal{S}(7)$, P(X < 2,9980) = 0,99. La loi de Student est symétrique P(X < a) = P(X > -a).

\ \	0.5	0.0	0.0	0.05	0.075	0.00	0.007	0.0075	0.000
$\nu \backslash \alpha$	0,5	0,8	0,9	0,95	0,975	0,99	0,995	0,9975	0,999
1	0.0000	1.3764	3.0777	6.3138	12.7062	31.8205	63.6567	127.3213	318.3088
2	0.0000	1.0607	1.8856	2.9200	4.3027	6.9646	9.9248	14.0890	22.3271
3	0.0000	0.9785	1.6377	2.3534	3.1824	4.5407	5.8409	7.4533	10.2145
4	0.0000	0.9410	1.5332	2.1318	2.7764	3.7469	4.6041	5.5976	7.1732
5	0.0000	0.9195	1.4759	2.0150	2.5706	3.3649	4.0321	4.7733	5.8934
6	0.0000	0.9057	1.4398	1.9432	2.4469	3.1427	3.7074	4.3168	5.2076
7	0.0000	0.8960	1.4149	1.8946	2.3646	2.9980	3.4995	4.0293	4.7853
8	0.0000	0.8889	1.3968	1.8595	2.3060	2.8965	3.3554	3.8325	4.5008
9	0.0000	0.8834	1.3830	1.8331	2.2622	2.8214	3.2498	3.6897	4.2968
10	0.0000	0.8791	1.3722	1.8125	2.2281	2.7638	3.1693	3.5814	4.1437
11	0.0000	0.8755	1.3634	1.7959	2.2010	2.7181	3.1058	3.4966	4.0247
12	0.0000	0.8726	1.3562	1.7823	2.1788	2.6810	3.0545	3.4284	3.9296
13	0.0000	0.8702	1.3502	1.7709	2.1604	2.6503	3.0123	3.3725	3.8520
14	0.0000	0.8681	1.3450	1.7613	2.1448	2.6245	2.9768	3.3257	3.7874
15	0.0000	0.8662	1.3406	1.7531	2.1314	2.6025	2.9467	3.2860	3.7328
16	0.0000	0.8647	1.3368	1.7459	2.1199	2.5835	2.9208	3.2520	3.6862
17	0.0000	0.8633	1.3334	1.7396	2.1098	2.5669	2.8982	3.2224	3.6458
18	0.0000	0.8620	1.3304	1.7341	2.1009	2.5524	2.8784	3.1966	3.6105
19	0.0000	0.8610	1.3277	1.7291	2.0930	2.5395	2.8609	3.1737	3.5794
20	0.0000	0.8600	1.3253	1.7247	2.0860	2.5280	2.8453	3.1534	3.5518
21	0.0000	0.8591	1.3232	1.7207	2.0796	2.5176	2.8314	3.1352	3.5272
22	0.0000	0.8583	1.3212	1.7171	2.0739	2.5083	2.8188	3.1188	3.5050
23	0.0000	0.8575	1.3195	1.7139	2.0687	2.4999	2.8073	3.1040	3.4850
24	0.0000	0.8569	1.3178	1.7109	2.0639	2.4922	2.7969	3.0905	3.4668
25	0.0000	0.8562	1.3163	1.7081	2.0595	2.4851	2.7874	3.0782	3.4502
26	0.0000	0.8557	1.3150	1.7056	2.0555	2.4786	2.7787	3.0669	3.4350
27	0.0000	0.8551	1.3137	1.7033	2.0518	2.4727	2.7707	3.0565	3.4210
28	0.0000	0.8546	1.3125	1.7011	2.0484	2.4671	2.7633	3.0469	3.4082
29	0.0000	0.8542	1.3114	1.6991	2.0452	2.4620	2.7564	3.0380	3.3962
30	0.0000	0.8538	1.3104	1.6973	2.0423	2.4573	2.7500	3.0298	3.3852
40	0.0000	0.8507	1.3031	1.6839	2.0211	2.4233	2.7045	2.9712	3.3069
45	0.0000	0.8497	1.3006	1.6794	2.0141	2.4121	2.6896	2.9521	3.2815
50	0.0000	0.8489	1.2987	1.6759	2.0086	2.4033	2.6778	2.9370	3.2614
55	0.0000	0.8482	1.2971	1.6730	2.0040	2.3961	2.6682	2.9247	3.2451
60	0.0000	0.8477	1.2958	1.6706	2.0003	2.3901	2.6603	2.9146	3.2317
65	0.0000	0.8472	1.2947	1.6686	1.9971	2.3851	2.6536	2.9060	3.2204
70	0.0000	0.8468	1.2938	1.6669	1.9944	2.3808	2.6479	2.8987	3.2108
75	0.0000	0.8464	1.2929	1.6654	1.9921	2.3771	2.6430	2.8924	3.2025
80	0.0000	0.8461	1.2922	1.6641	1.9901	2.3739	2.6387	2.8870	3.1953
90	0.0000	0.8456	1.2910	1.6620	1.9867	2.3685	2.6316	2.8779	3.1833
100	0.0000	0.8452	1.2901	1.6602	1.9840	2.3642	2.6259	2.8707	3.1737

Mathématiques 3 15 http://annales.maths.u-cergy.fr/

Table des quantiles d'une loi de χ^2 á ν degrés de libertés Si X est une variable aléatoire suivant une loi de χ^2 á ν degrés de libertés, le tableau donne t

$$P(X < t) = \alpha$$

Par exemple si $X \sim \chi^2(7)$, P(X < 14,0671) = 0,95.

I al CA	emple si A	χ χ	$I (\Lambda \setminus I)$	=	0, 50.				
$\nu \backslash \alpha$	0.0100	0.0250	0.0500	0.1000	0.5000	0.9000	0.9500	0.975	0.9900
2	0.0201	0.0506	0.1026	0.2107	1.3863	4.6052	5.9915	7.3778	9.2103
3	0.1148	0.2158	0.3518	0.5844	2.3660	6.2514	7.8147	9.3484	11.3449
4	0.2971	0.4844	0.7107	1.0636	3.3567	7.7794	9.4877	11.1433	13.2767
5	0.5543	0.8312	1.1455	1.6103	4.3515	9.2364	11.0705	12.8325	15.0863
6	0.8721	1.2373	1.6354	2.2041	5.3481	10.6446	12.5916	14.4494	16.8119
7	1.2390	1.6899	2.1673	2.8331	6.3458	12.0170	14.0671	16.0128	18.4753
8	1.6465	2.1797	2.7326	3.4895	7.3441	13.3616	15.5073	17.5345	20.0902
9	2.0879	2.7004	3.3251	4.1682	8.3428	14.6837	16.9190	19.0228	21.6660
10	2.5582	3.2470	3.9403	4.8652	9.3418	15.9872	18.3070	20.4832	23.2093
11	3.0535	3.8157	4.5748	5.5778	10.3410	17.2750	19.6751	21.9200	24.7250
12	3.5706	4.4038	5.2260	6.3038	11.3403	18.5493	21.0261	23.3367	26.2170
13	4.1069	5.0088	5.8919	7.0415	12.3398	19.8119	22.3620	24.7356	27.6882
14	4.6604	5.6287	6.5706	7.7895	13.3393	21.0641	23.6848	26.1189	29.1412
15	5.2293	6.2621	7.2609	8.5468	14.3389	22.3071	24.9958	27.4884	30.5779
16	5.8122	6.9077	7.9616	9.3122	15.3385	23.5418	26.2962	28.8454	31.9999
17	6.4078	7.5642	8.6718	10.0852	16.3382	24.7690	27.5871	30.1910	33.4087
18	7.0149	8.2307	9.3905	10.8649	17.3379	25.9894	28.8693	31.5264	34.8053
19	7.6327	8.9065	10.1170	11.6509	18.3377	27.2036	30.1435	32.8523	36.1909
20	8.2604	9.5908	10.8508	12.4426	19.3374	28.4120	31.4104	34.1696	37.5662
21	8.8972	10.2829	11.5913	13.2396	20.3372	29.6151	32.6706	35.4789	38.9322
22	9.5425	10.9823	12.3380	14.0415	21.3370	30.8133	33.9244	36.7807	40.2894
23	10.1957	11.6886	13.0905	14.8480	22.3369	32.0069	35.1725	38.0756	41.6384
24	10.8564	12.4012	13.8484	15.6587	23.3367	33.1962	36.4150	39.3641	42.9798
25	11.5240	13.1197	14.6114	16.4734	24.3366	34.3816	37.6525	40.6465	44.3141
26	12.1981	13.8439	15.3792	17.2919	25.3365	35.5632	38.8851	41.9232	45.6417
27	12.8785	14.5734	16.1514	18.1139	26.3363	36.7412	40.1133	43.1945	46.9629
28	13.5647	15.3079	16.9279	18.9392	27.3362	37.9159	41.3371	44.4608	48.2782
29	14.2565	16.0471	17.7084	19.7677	28.3361	39.0875	42.5570	45.7223	49.5879
30	14.9535	16.7908	18.4927	20.5992	29.3360	40.2560	43.7730	46.9792	50.8922
31	15.6555	17.5387	19.2806			41.4217	44.9853	48.2319	52.1914
32	16.3622	18.2908	20.0719	22.2706	31.3359	42.5847	46.1943	49.4804	53.4858
33	17.0735	19.0467	20.8665	23.1102	32.3358	43.7452	47.3999	50.7251	54.7755
34	17.7891	19.8063	21.6643	23.9523	33.3357	44.9032	48.6024	51.9660	56.0609
35	18.5089	20.5694	22.4650	24.7967	34.3356	46.0588	49.8018	53.2033	57.3421
40	22.1643	24.4330	26.5093	29.0505	39.3353	51.8051	55.7585	59.3417	63.6907
45	25.9013	28.3662	30.6123	33.3504	44.3351	57.5053	61.6562	65.4102	69.9568
50	29.7067	32.3574	34.7643	37.6886	49.3349	63.1671	67.5048	71.4202	76.1539
55	33.5705	36.3981	38.9580	42.0596	54.3348	68.7962	73.3115	77.3805	82.2921
60	37.4849	40.4817	43.1880	46.4589	59.3347	74.3970	79.0819	83.2977	88.3794
65	41.4436	44.6030	47.4496	50.8829	64.3346	79.9730	84.8206	89.1771	94.4221
70	45.4417	48.7576	51.7393	55.3289	69.3345	85.5270	90.5312	95.0232	100.4252
75	49.4750	52.9419	56.0541	59.7946	74.3344	91.0615	96.2167	100.8393	106.3929
80	53.5401	57.1532	60.3915	64.2778	79.3343	96.5782	101.8795	106.6286	112.3288
90	61.7541	65.6466	69.1260	73.2911	89.3342	107.5650	113.1453	118.1359	124.1163
100	70.0649	74.2219	77.9295	82.3581	99.3341	118.4980	124.3421	129.5612	135.8067